Short Note

Winter habitat selection by the European hare (Lepus europaeus) during feeding activity in a farmland area of southern Tuscany (Italy)

Francesco Santilli→*, Gisella Paci b, Marco Bagliacca b

→Via F. Dini 3, Campiglia Marittima, Italy
bDipartimento di Scienze Veterinarie, Università degli Studi di Pisa, Via delle Piazzette 2, Pisa, Italy

Keywords: European hare Lepus europaeus arable crops habitat use over winter cereal stubbles

Introduction

The number of European hares (Lepus europaeus) has drastically decreased in Italy (Santilli and Galardi, 2006), as well as in the whole of Europe since the 1960’s (Marboutin and Péroux, 1995; Hutchings and Harris, 1996; Slamečka et al., 1997; Edwards et al., 2000; Marboutin et al., 2003; Vaughan et al., 2003; Schmidt et al., 2004; Smith et al., 2005). It has been widely accepted that habitat changes caused by the intensification of agriculture are a key factor in driving the long-term decline of the species (Edwards et al., 2000; Smith et al., 2005; Santilli and Galardi, 2006; Zellweger-Fischer et al., 2011). Agriculture intensification resulting in loss of biodiversity, can significantly affect the habitat diversity of ecosystems inhabited by hares. Habitat diversity is considered a key factor for the European hare conservation (Tapper and Barnes, 1986; Meriggi and Alieri, 1989; Smith et al., 2004). Hares are best sustained by agricultural habitats which provide them with a diversity of crops at different growth stage in order to ensure food and shelter throughout the year. (i.e., herbaceous crops, hayfields, and meadows) (Tapper and Barnes, 1986; Meriggi and Verri, 1990; Santilli et al., 2004; Cardarelli et al., 2011; Kamieniarz et al., 2013). The structure of agricultural landscape can also influence the rate of predation (Slamečka, 1991; Smith et al., 2005), in particular by red fox, which is documented to negatively affect hare densities (Knauer et al., 2010; Reynolds and Tapper, 1995; Schmidt et al., 2004; Panek et al., 2006; Panek, 2009).

However, other factors such as diseases (Lamarque et al., 1996; Paci et al., 2011), landscape fragmentation (Roedenbeck and Vosker, 2008) climatic conditions (Killas and Ackermann, 2001; Jennings et al., 2006; Santilli and Galardi, 2006; Spittler, 1997) and kind of soil (Santilli and Ferretti, 2008) are also reported to play a role in shaping European hare abundance.

Although the habitat use by hares in arable farmlands is generally known, the need to study in depth habitat selection and preference by hares still persists in intensive agro-ecosystems and during limiting seasons. For these reasons spot-light counts were carried out in a farmland area of southern Tuscany (Italy) from 2008 to 2011, with the aim of investigating habitat use by the European hare during winter (December) and obtaining useful information about hare habitat requirements for management purposes.

Study area

The study area (42°56′50″N, 10°48′29″E) is located in the Grosseto province (south-western Tuscany, Italy) at a distance of about 3.5 km from the coast line. It is a protected area (7.6 km²) established more than thirty years ago to conserve small game species (only predator control is allowed). The climate is Mediterranean warm-temperate, with mild winters. The annual mean temperature is 15.7°C with a maximum of 30°C in July and a minimum of 3°C in January. Rainfall is quite scarce (655 mm per year). Land use included, arable crops (winter wheat, winter beans, sunflowers, and alfalfa Medicago sativa, 89.3%), olive tree groves (5.2%), forest pastures (1.1%), woodlands (mainly pine-woods, 2.1%), ditches with grassy banks (1.8%) and human settlements (1.0%) (Fig. 1). On average 15% of arable lands were devolved to over winter cereal stubble.

During the study period hare density estimated by spot-light counts (Langbein et al., 1999) averaged 40.0 hares/km² (S.D.=7.82), with a minimum of 31.6 hares/km² in 2010 and a maximum of 47.0 hares/km² in 2011.

In the study area hooded crows (Corvus cornix cornix) and magpies (Pica pica) were controlled using Larsen traps and foxes (Vulpes vulpes) by shooting. Average fox density estimated by spot-light counts (Heydon et al., 2000) was 0.9 fox/km² (S.D.=0.38).

Methods

Habitat use was evaluated using spot-light counts carried out from a moving car (maximum speed: 5 km/h) along 4 transects for a total length of 14.5 km, lighting up both sides of the transects by a handle lamp (1 million candle power) and mapping the lighted belt on aerial photographs (Langbein et al., 1999). The transect route was selected from the existing fields road network so as to survey each habitat type in proportion to its relative extension; in this way the distribution of hares within the sampled area did not differ from that of the whole study area.

*Corresponding author

Email address: perdix@teletu.it (Francesco Santilli)

©CBE Hystrix, the Italian Journal of Mammalogy ISSN 1825-5272 14th May 2014

Hystrix, It. J. Mamm. (2014) — online first

Table 1 – Results of Bonferroni simultaneous confidence interval analysis for the use of habitat types by European hares during winter (pooled years, Province of Grosseto (south-western Tuscany, Italy)).

<table>
<thead>
<tr>
<th>Habitat</th>
<th>Proportion availability</th>
<th>Hares observed</th>
<th>Hares expected</th>
<th>Manly’s index</th>
<th>Bonferroni confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter cereals</td>
<td>0.305</td>
<td>181</td>
<td>148</td>
<td>0.13</td>
<td>0.330 ≤ P ≤ 0.416 **</td>
</tr>
<tr>
<td>Ploughed fields</td>
<td>0.303</td>
<td>103</td>
<td>147</td>
<td>0.08</td>
<td>0.176 ≤ P ≤ 0.249 **</td>
</tr>
<tr>
<td>Alfalfa fields</td>
<td>0.070</td>
<td>22</td>
<td>34</td>
<td>0.07</td>
<td>0.027 ≤ P ≤ 0.064 *</td>
</tr>
<tr>
<td>Olive tree groves</td>
<td>0.017</td>
<td>18</td>
<td>8</td>
<td>0.24</td>
<td>0.020 ≤ P ≤ 0.054 *</td>
</tr>
<tr>
<td>Horse pasture</td>
<td>0.024</td>
<td>12</td>
<td>12</td>
<td>0.11</td>
<td>0.011 ≤ P ≤ 0.039 *</td>
</tr>
<tr>
<td>Cereal stubbles</td>
<td>0.144</td>
<td>117</td>
<td>70</td>
<td>0.18</td>
<td>0.203 ≤ P ≤ 0.279 **</td>
</tr>
<tr>
<td>Fallow fields</td>
<td>0.114</td>
<td>18</td>
<td>55</td>
<td>0.04</td>
<td>0.020 ≤ P ≤ 0.054 **</td>
</tr>
<tr>
<td>Winter beans</td>
<td>0.023</td>
<td>14</td>
<td>11</td>
<td>0.14</td>
<td>0.014 ≤ P ≤ 0.044</td>
</tr>
<tr>
<td>Total</td>
<td>3.15 km²</td>
<td>485</td>
<td></td>
<td></td>
<td>χ² = 94.53, p < 0.0001</td>
</tr>
</tbody>
</table>

* p < 0.05, ** p < 0.01, preferred habitats in bold.

Results

Olive tree groves, cereal stubbles, winter cereals and winter beans resulted used more with respect to their availability, although in the last case the value was not not significant. Ploughed fields, alfalfa and fallow fields resulted used less with respect to their availability. The use of horse pastures did not differ from availability. Use calculated by Manly’s index resulted: 0.24 for olive tree groves, 0.18 for over winter cereal stubbles, 0.14 for winter beans, 0.13 for winter cereals, 0.11 for horse pasture, 0.08 for ploughed fields, 0.07 for alfalfa fields, 0.04 for fallow fields. (Tab. 1).

Discussion

Olive tree groves and over winter cereal stubbles registered the highest uses followed by winter cereals and winter beans. Fallow fields registered the highest avoidance value followed by alfalfa and ploughed fields. Horse pasture was used as its availability.

Olive tree groves in the study area were always grassed and mowed periodically. So they can offer a great variety of suitable weeds. In addition these crops offer protection from adverse weather and from aerial predators. Over winter stubbles provide essential seed-rich resources for a wide array of species. In particular, they offer a great variety of weeds that make this fields more attractive than winter cereals, where the chemical input and the agricultural processing reduce weeds availability (Tapper, 1987). Frylestam (1986) found that in winter wild plants are generally preferred to agricultural crops indicating the importance of a rich wild flora available to hares. In the study area, approximately 50% of over-winter cereal stubble were the result of economic agreements between the hunting district and local farmers. Our study underlined the importance of this kind of agro-environmental measure for European hare conservation.

Growing winter cereals are usually the most preferred food by hares during winter (Reichlin et al., 2006). This fact probably explain the high use of these crops found in our study. During the surveys in fact winter cereals were in the sprouting stage. Sprouted grain have a high nutritive value due to the activity of hydrolytic enzymes that improve the digestibility of starch and proteins (Chavan et al., 1989). Winter cereals were in the sprouting stage. Sprouted grain have a high nutritive value due to the activity of hydrolytic enzymes that improve the digestibility of starch and proteins (Chavan et al., 1989).

Fallow fields, set aside and natural vegetation generally play a positive role for the European hare conservation in arable lands, (Frylestam, 1992; Hutchings and Harris, 1996; Vaughan et al., 2003) but hares generally avoid them during the winter (Smith et al., 2004). In addition their use is strongly dependent upon their vegetation structure (Nemann et al., 2011; Pépin and Angibault, 2007). However the low use of fallows in our study might be influenced by the height of vegetation that often reduced the detectability of the hares in these fields.

The avoidance of alfalfa by hares may be surprising, but it is known that this crop during the winter stops its vegetative activity. In this phase the nutritive value tend to be lower than in spring. Lucerne and the other forage legumes as clovers become very important in the spring-summer when cereals start to ripen and their digestibility is reduced. However Reichlin et al. (2006) found that as food item clovers (Trifolium pratense and Trifolium repens) are more selected then alfalfa in a arable area of Austria.

Ploughed fields are important resting site during the winter when the height of vegetation of adjacent crops is generally reduced (Pépin and Angibault, 2007) but tend to be avoided during feeding activity. Pastures are generally considered an unsuitable habitat for hares (McLaren et al., 1997). In our case, the presence of horses, which grazed at low

Figure 1 – Land use of the study area.
density, improved a high herbaceous diversity. In addition equines tend to create a mosaic of short, heavily grazed lawns interspersed with patches of taller, lightly grazed or ungrazed vegetation (Ausden, 2007). This kind of cover is probably quite favourable for hares because can be used both for feeding and resting. Generally pastures grazed by cattle are avoided in winter when other crops are available, whereas pastures grazed by sheep are avoided in all seasons (Smith et al., 2004). The neg- ative effect of the density of grazing sheep on brown hare bag records was confirmed also in Tuscany (Santilli and Galardi, 2006). Smith et al. (2004) clarified that avoidance of pasture is mainly due by the low heterogeneity at the within-habitat scale as a consequence of high grazing pressure. Unimproved grasslands which has a heterogeneous structure, is strongly associated with high hare numbers (Hutchings and Harris, 1996).

Our results suggest that landscapes characterized by heterogeneous vegetation structure and by low horse grazing pressure might provide a suitable habitats for hares. In addition over winter stubbles seem to be a valuable measure for hare conservation within simplified agro-ecosystems probably because they provide a high variety of palatable weeds.

References

Associate Editor: N. Ferrari